2.6.8.15. Denoising an image with the median filterΒΆ

This example shows the original image, the noisy image, the denoised one (with the median filter) and the difference between the two.

../../../_images/sphx_glr_plot_denoising_001.png
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
im = np.zeros((20, 20))
im[5:-5, 5:-5] = 1
im = ndimage.distance_transform_bf(im)
im_noise = im + 0.2*np.random.randn(*im.shape)
im_med = ndimage.median_filter(im_noise, 3)
plt.figure(figsize=(16, 5))
plt.subplot(141)
plt.imshow(im, interpolation='nearest')
plt.axis('off')
plt.title('Original image', fontsize=20)
plt.subplot(142)
plt.imshow(im_noise, interpolation='nearest', vmin=0, vmax=5)
plt.axis('off')
plt.title('Noisy image', fontsize=20)
plt.subplot(143)
plt.imshow(im_med, interpolation='nearest', vmin=0, vmax=5)
plt.axis('off')
plt.title('Median filter', fontsize=20)
plt.subplot(144)
plt.imshow(np.abs(im - im_med), cmap=plt.cm.hot, interpolation='nearest')
plt.axis('off')
plt.title('Error', fontsize=20)
plt.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9, bottom=0, left=0,
right=1)
plt.show()

Total running time of the script: ( 0 minutes 0.123 seconds)

Gallery generated by Sphinx-Gallery